

Cu2-xSe-CdSe 光起電力素子 B - 19

◆川博義 宫下和雄 和田正信"(窗山大工学部* 東北大工学部**) 勉 0大竹

前用の報告と同様に、真空墜着法により CuarSe-CalSe 光起電力素子を作製した。今田は、光起 まえがき 電力の大きな素子を得らためKなされる CuzzSe茎着後の熱処理と特性の変化の関係を調べ、熱処理 によな接合の変化について考察したので報告すな。

実験結果. 光起電力の大きな素子を作るためには、ColSe基板を加熱しながらCusaSeを基着動か(図1)あ ないは、CuzaSe 蓋着後に越処理を施さなければならない(图2)ことがわれた。 図1と図2から、ColSeの抵抗率が 大きい方が、Curase 茎着中 K CdSe 基板を加熱する方法K あいては、加熱温なが低くてもよく、Curase 茎着後K熱 処理する方法にあいては短時間でよいことがわかった。図3はCurySe茎着後に数処理する方法によって作製した 素子の, 塾処理Kよる分光特性(短絡電流)の変化である。 CASの限界波長(130 m/4)付近で感激が急激K浜少 した。また、表処理の素子では長波長側(200m/4付近)の威なが少なく、 CdSeo抵抗率 0 ~103 s-m 充分K熱処理したあとでは、短波長側(500m/1/地)の威友が減少することが Δ ~10⁴ Ω-cm 0.2 わかった。 図4は 熱処理時間と電流-電圧特性の 関係である。未処理 E のときはオーム性に近いものが、就処理によって発流性が現われることが ЧH わか、た、得られた素子の変換効率に約3%(光泳:タンブステンランプ)であった。 ₩0.1 さらK,光記電力K対する境界面の影響を調べるためK,別の方法で接 す 合を作製し比較した。すなわち、CdSe膜をCuttrン溶液に愛してCdSe表面に Ħ Cuarse層を作り、その素子の特性を調べた。熱処理の効果Kのいては図2と同じ 0 ' 0 50 100 150 傾向が得られ,電流-電圧特性, 開放電圧, 短絡電流, 发换效率も CuzaSe o 温 な (°C) 芝着によって作業した素子と大きな差はなかった。 11. CuzzSe基着時の基板温台と南放電圧 考察、图3でColSeの限界波長で分光威なが急い減少ないとから主として Colse中で吸収された光が光記宅カバ寄与していると思られる。また障壁を界 03 領域で発生したキャリアドけが光起電力に寄与すると考えると、図2と図3は次のよ 302 うい説明される。未処理の状態ではCASe中の障壁電界領域は光の吸收領域よ りも狭く、長波長(クロッル付近)の光は障壁電界領域を通過するので長波長の威能 Calsea抵抗率 2.5×105 0-cm が少なく光起会力は少ない。載処理を施すと、LKWK障壁電界領域が広くなて ※01年 5.8×104 長裕長の威なが増加する。障壁電界領域が光の吸収領域を越えると、光はすべ 📼 7.3 x 103 16.9 × 102 て障壁電界領域で吸収されるが、表面近くで発生したもりアは再結合等K& 0 5 間 10 て失われ,短波長(500m/4付近)の威なが減りする。 時 (分) このことから、CuzzaSe茎着後、熱処理KよってColSe中K高抵抗層ができ、それが 图2. 数处理時間と 南放電圧 (温な110℃) 障壁電界も形成していると思め 0 未処理 12-れる。また,化学的大作製した素子 △ 2分翅処理 1.4 単14) (mp/m) の特性との比較から、光起きかは • 14 1.2 (元、) 刻处理温友 境界面の状態にはあまり依存せ 流 0.8 ず、むしろ ColSe中KできK障壁 流 電界領域に起因していなと思い 0.4 R bib -0.8 -04 络 \cap 化学的K作製した素子の実 0,2 0.4 題 電圧(V) 験に)しては本学卒業生の • 末饥理 -02 △ 4分熱処理 大浦利雄氏の援助を得たい 0 ■ /4分 0.4 500 400 600 700 800 に謝意を表する あの理温友 110°C (m,u) 沷 長 (dseo.故抗学 5.8×104-5-00 文献 1) 大竹如 新知 图4. 電流電圧特性 图3. 分光特性 (短鋒電流)

44年 電気四等北陸連大手稿 44

A speaker, Tsutomu Otake**, presented a paper "Cu2-xSe-CdSe Photovoltaic cells*" at Joint conference of Hokuriku chapter of four Electrical Societies in 1970.

* The world first research paper regarding the Cu_{2-x}Se-CdSe Photovoltaic cells.

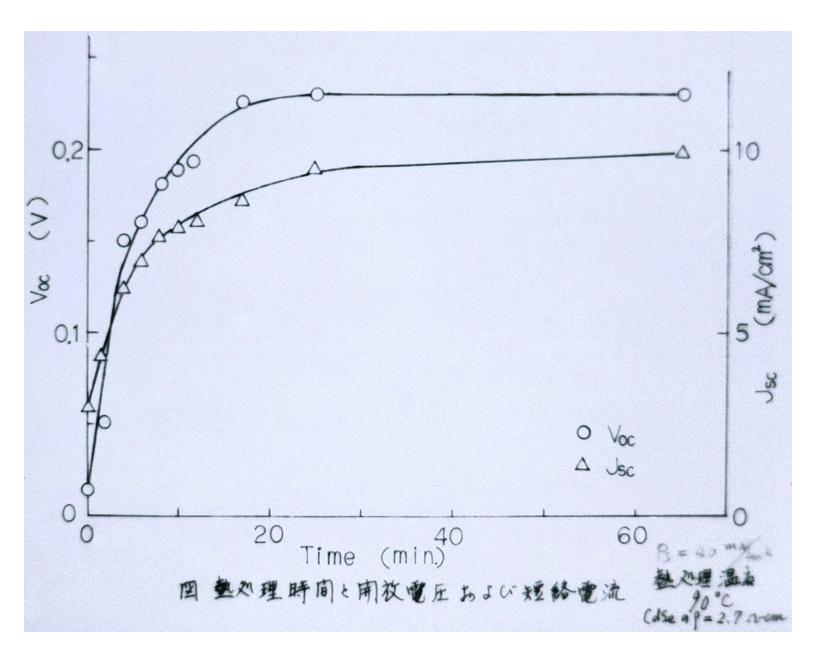
** A lecturer in department of electronic engineering, faculty of engineering, Toyama university (University of Toyama later on), PhD in electrical engineering of Tohoku University.

I was fortunate because Dr. Tsutomu Otake mentored my entire graduation research and FET.

When I was a 4th grader of Toyama University, I tentatively made a Cu_{2-x}Se-CdSe photovoltaic cell (solar cell) on a glass plate under suggestion of lecturer Tsutomu Otake and professor Kazuo Miyashita. One of working samples achieved energy conversion efficiency of 3%*.

The procedure** I newly examined was;

- (1) Fabricate under heat treatment
- (2) Dry after dipping observing replacement reactions***
- (3) Rinse by pure water

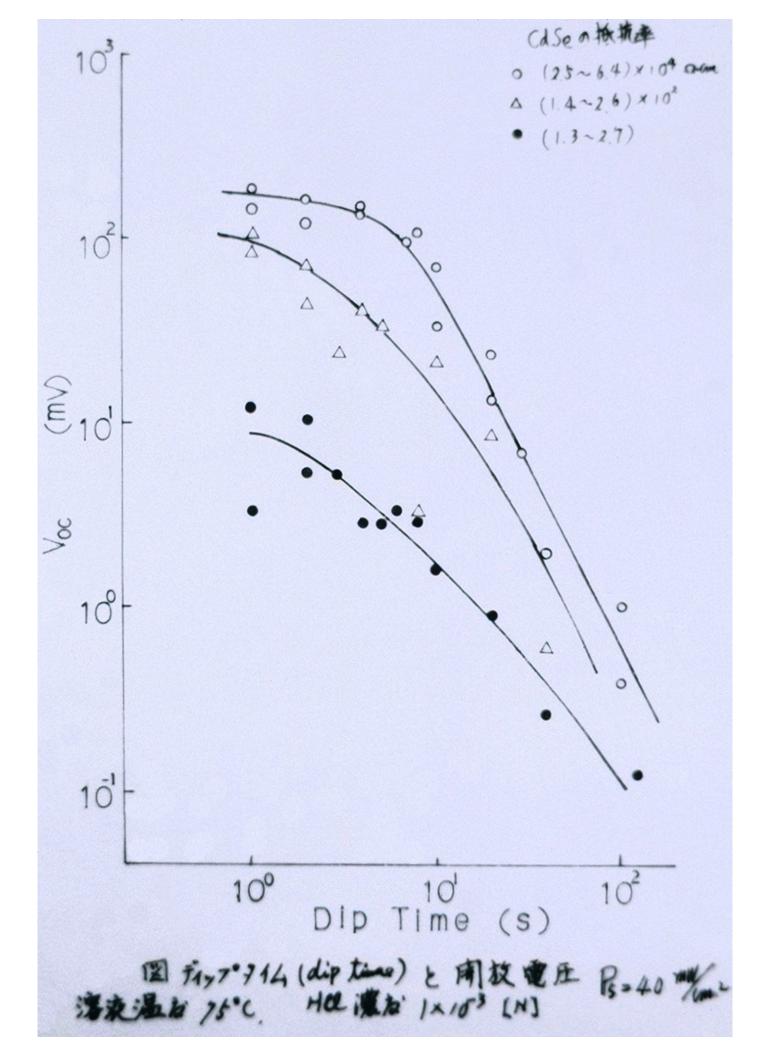

* The 3% efficiency was measured according to the calculation between the output power density of 3 mW/cm² and the solar energy density of 100 mW/cm² at Toyama University Takaoka campus clear sunny day in March, 1970.

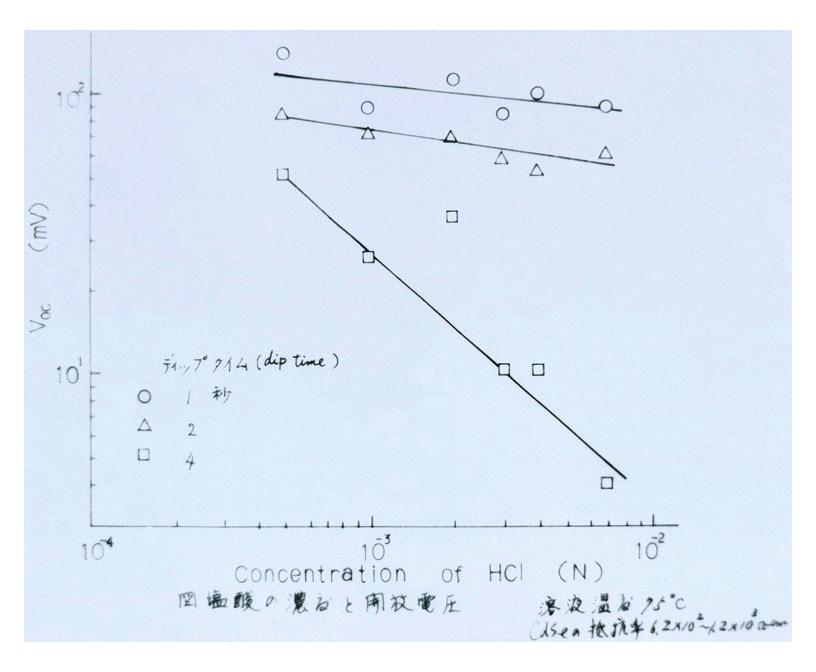
** I was awfully surprised when the samples after rinse and dry exhibited a rectification characteristic and output electric power as the solar cells in December, 1969.

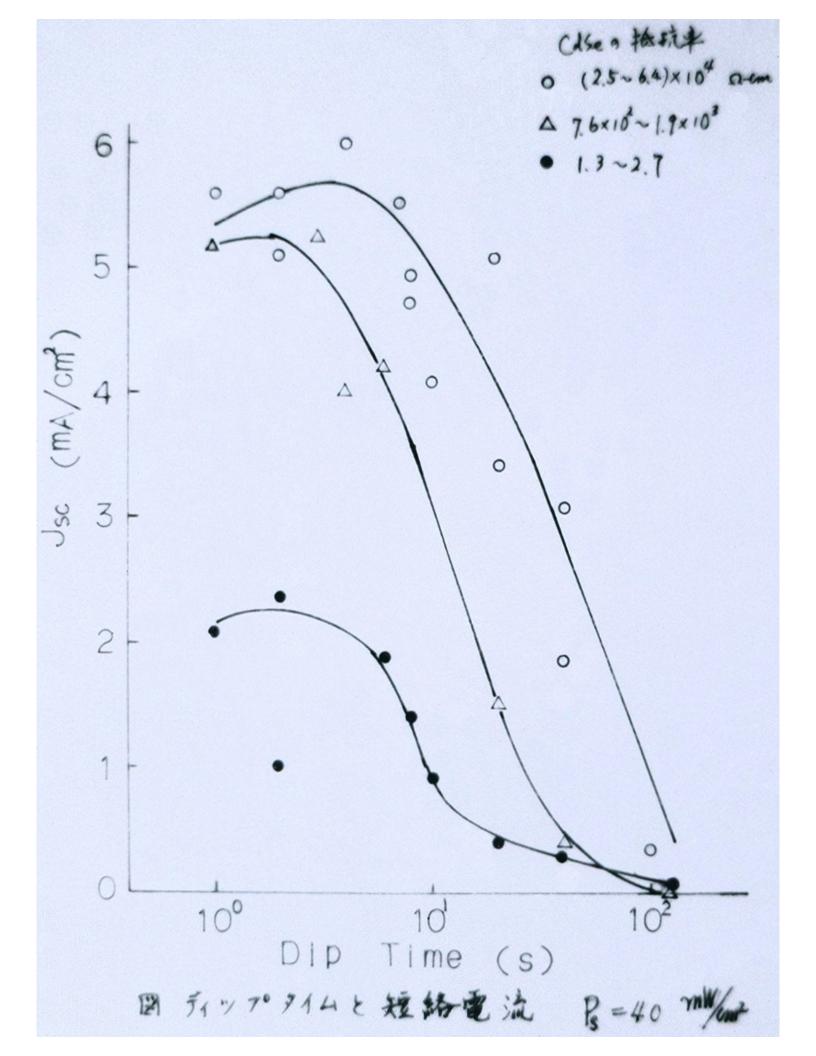
Heating the samples near coal stove seemed to be one of heat treatments essential for making the Cu_{2-x} Se-CdSe solar cells because the treatment made hetero p-n junctions to generate the electric powers by lights. Placing the rinsed samples of the cells near heat generating coal stove was derived from my serendipity.

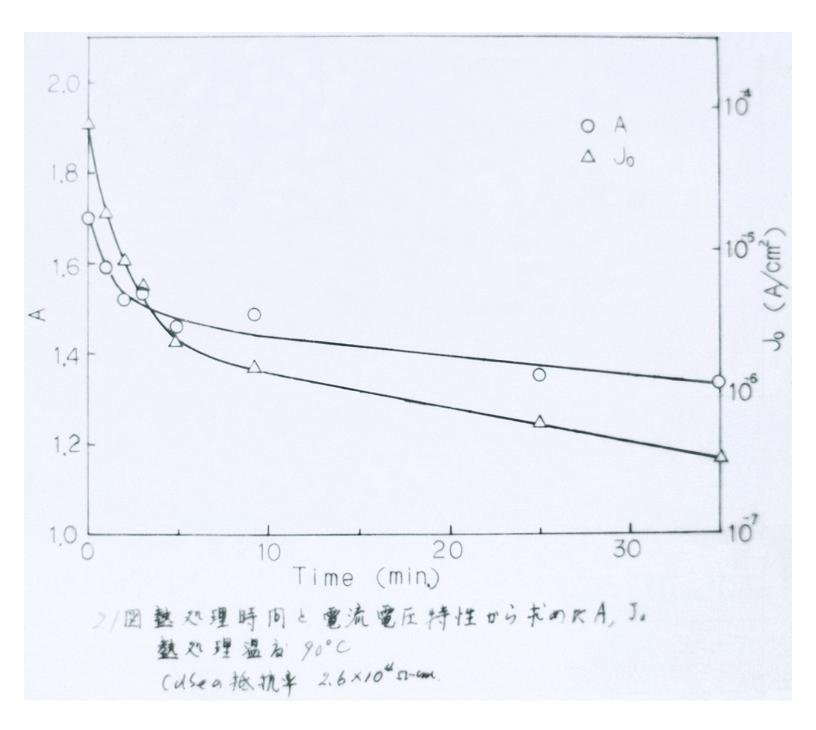
*** A n-type semiconductor CdSe (Cadmium Selenium) thin film layer vapor-deposited on a chrominum thin film layer vapor-deposited on the glass plate is dipped into hydrochloric acid including Cu+ (Copper) ions in order to spawn replacement reactions of Cd atoms in a surface of the CdSe thin film layer to make a p-type semiconductor Cu_{2-x}Se thin layer on the CdSe thin film layer.

Five pages slides attached reflect the experiment results performed for my graduation research titled "Cu_{2-x}Se-CdSe Solar cells based on replacement method". It was referred by the paper listed at the first page.


 Cu_{2-x} Se-CdSe solar cell functional improvement applied by heat treatment (60 minutes at 90°C) I invented compared to no heat-treatment (no dip time) are the followings.


- Power generation effectiveness improved 57.8 times.


- Output power based on the Voc (Open circuit voltage) exhibited 17 times more.


- Short circuit current density Jsc exhibited 3.4 times more.

See slides attached.

When I was a 4th grader, I joined Miyashita laboratory led by professor Kazuo Miyashita, who was one of coauthors of the paper, in order to study semiconductor further more because I was interested in the semiconductor technologies lectured by him when I was a 3rd grader. It definitely triggered me joining NEC. Fortunately, I was able to study MOS Feild Effect cells in the Miyashita laboratory and was able to make Cu_{2-x}Se-CdSe Photovoltaic cells (Solar cells) for my graduation research.

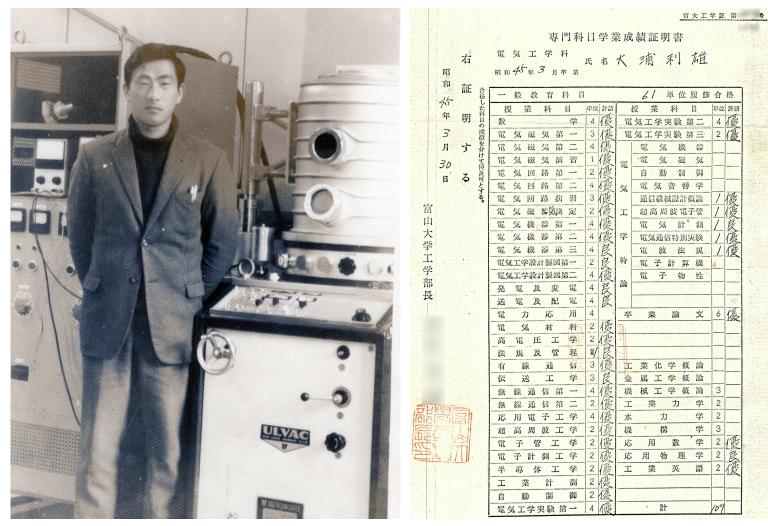
Based upon the actual results done at university, I requested top executives of semiconductor and IC sales division concerning job transfer from sales to engineering full-heartedly when interview done in April, 1970.

As a result, I started assisting engineers who were designing MOS LSIs for calculators in consumer product design group of circuit design department, IC division.

Then, I moved to the same design group in June, 1971 and awfully pleased to start designing MOS LSIs myself. More fortunately I met with Mr. Tetsuji Oguchi and work with him therein.

I took charge of the design of various E/D MOS LSIs for calculators sold substantial amount.

(1) µPD277C (First appearance of P-channel metal gate E/D MOS LSI in NEC)


3 million pieces of µPD277Cs were shipped to Sharp.

µPD276C/278C, derivatives of µPD277C, were shipped to Canon, Omron, Citizen, Calcomp and so on.

(2) µPD977C/577C (Second generation of E/D MOS LSI in NEC)

5 million pieces of μ PD977Cs and 577Cs were shipped to Casio.

- Achieved lowest power dissipation of maximum 19.9mW and the smallest die size of 3.615mm square in NEC P-channel metal gate MOS LSIs for calculators of the day.

Toshio Oura at university lab

Graduation grades